Applications to continuous-time processes of computational techniques for discrete-time renewal processes
نویسندگان
چکیده
For optimising maintenance, the total costs should be computed over a bounded or unbounded time horizon. In order to determine the expected costs of maintenance, renewal theory can be applied when we can identify renewals that bring a component back into the as-good-as-new condition. This publication presents useful computational techniques to determine the probabilistic characteristics of a renewal process. Because continuous-time renewal processes can be approximated with discrete-time renewal processes, it focusses on the latter processes. It includes methods to compute the probability distribution, expected value and variance of the number of renewals over a bounded time horizon, the asymptotic expansion for the expected value of the number of renewals over an unbounded time horizon, the approximation of a continuous renewaltime distribution with a discrete renewal-time distribution, and the extension of the discrete-time renewal model with the possibility of zero renewal times (in order to cope with an upper-bound approximation of a continuous-time renewal process).
منابع مشابه
Computational techniques for discrete-time renewal processes
For applying life-cycle costing, the total costs should be computed over a bounded or unbounded time horizon. In order to determine the expected costs of maintenance, renewal theory can be applied when we can identify renewals that bring a component back into the as-good-as-new condition. This paper presents useful computational techniques to determine the probabilistic characteristics of a ren...
متن کاملExtended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملOptimal Stochastic Control in Continuous Time with Wiener Processes: General Results and Applications to Optimal Wildlife Management
We present a stochastic optimal control approach to wildlife management. The objective value is the present value of hunting and meat, reduced by the present value of the costs of plant damages and traffic accidents caused by the wildlife population. First, general optimal control functions and value functions are derived. Then, numerically specified optimal control functions and value func...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 93 شماره
صفحات -
تاریخ انتشار 2008